Реакция алюминия с оксидами металлов. Алюминий: свойства химические и физические. Алюминий и кислоты

Алюминий – металл, содержание которого в природе самое большое среди всех известных. Позднее начало его применения вызвано тем, что, поскольку он обладает высокой химической активностью, то находится в земной коре только в составе различных химических соединений. Восстановление чистого металла сопряжено с рядом трудностей, преодолеть которые стало возможным только с развитием технологий добычи металлов.

Чистый алюминий – мягкий ковкий металл серебристо-белого цвета. Это один из легчайших металлов, который, к тому же, хорошо поддается разнообразной механической обработке, штамповке, прокатке, литью. На открытом воздухе практически моментально покрывается тонкой и прочной пленкой окисла, которая противодействует дальнейшему окислению.

Механические свойства алюминия, такие как мягкость, податливость штамповке, легкость в обработке, послужили широкому распространению во многих отраслях промышленности. Особенно часто алюминия используется в составе сплавов с другими металлами.

Физические и химические свойства сплавов алюминия послужили поводом к широкому использованию их в качестве конструкционных материалов, снижающих общий вес конструкции без ухудшения прочностных качеств.

Физические свойства

Алюминий не имеет каких-либо уникальных физических свойств, но их сочетание делает металл одним из самых широко востребованных.

Твердость чистого алюминия по шкале Мооса равняется трем, что значительно ниже, чем у большинства металлов. Данный факт является практически единственным препятствием для использования чистого металла.

Если внимательно рассмотреть таблицу физических свойств алюминия, то можно выделить такие качества, как:

  • Малую плотность (2.7 г/см 3);
  • Высокую пластичность;
  • Низкое удельное электрическое сопротивление (0,027 Ом·мм 2 /м);
  • Высокую теплопроводность (203.5 Вт/(м·К));
  • Высокую светоотражательная способность;
  • Низкую температуру плавления (660°С).

Такие физические свойства алюминия, как высокая пластичность, низкая температура плавления, отличные литейные качества, позволяют использовать данный металл в чистом виде и в составе сплавов на его основе для производства изделий любой самой сложной конфигурации.

Вместе с этим, это один из немногих металлов, хрупкость которого не возрастает при охлаждении до сверхнизких температур. Данное свойство определило одну из областей применения в конструктивных элементах криогенной техники и аппаратуры.

Существенно более высокую прочность, сравнимую с прочностью некоторых сортов стали, имеют сплавы на основе алюминия. Наибольшее распространение получили сплавы с добавлением магния, меди и марганца – дюралюминиевые сплавы и с добавлением кремния – силумины. Первая группа отличается высокой прочностью, а последняя одними из самых лучших литейных качеств.

Невысокая температура плавления снижает затраты на производство и себестоимость технологических процессов при производстве конструкционных материалов на основе алюминия и его сплавов.

Для изготовления зеркал используется такое качество, как высокий коэффициент отражения, сравнимый с показателем серебра, легкость и технологичность вакуумного напыления алюминиевых пленок на различные несущие поверхности (пластики, металл, стекло).

При плавке алюминия и выполнения литья особое внимание обращается на способность расплава поглощать водород. Не оказывая действий на химическом уровне, водород способствует уменьшению плотности и прочности за счет образования микроскопических пор при застывании расплава.

Благодаря низкой плотности и малому электрическому сопротивлению (ненамного выше меди), провода из чистого алюминия находят преимущественное применение при передаче электроэнергии в линиях электропередач, всего диапазона токов и напряжений в электротехнике, как альтернатива медным силовым и обмоточным проводам. Сопротивление меди несколько меньше, поэтому провода из алюминия необходимо использовать большего сечения, но итоговая масса изделия и его себестоимость оказываются в несколько раз меньше. Ограничением служит только несколько меньшая прочность алюминия и высокая сопротивляемость пайке из-за пленки окислов на поверхности. Большую роль играет наличие сильного электрохимического потенциала при контакте с таким металлом, как медь. В результате, в месте механического контакта меди и алюминия образуется прочная пленка окисла, имеющего высокое электрическое сопротивление. Это явление приводит к нагреву места соединения вплоть до расплавления проводников. Существуют жесткие ограничения и рекомендации по применению алюминия в электротехнике.

Высокая пластичность позволяет изготавливать тонкую фольгу, которая используется в производстве конденсаторов высокой емкости.

Легкость алюминия и его сплавов стали основополагающими при использовании в авиакосмической отрасли при изготовлении большинства элементов конструкции летательных аппаратов: от несущих конструкций, до элементов обшивки, корпусов приборов и оборудования.

Химические свойства

Являясь довольно химически активным металлом, алюминий активно сопротивляется коррозии. Это происходит благодаря образованию на его внешней поверхности очень прочной оксидной пленки под действием кислорода.

Прочная пленка оксида хорошо защищает поверхность даже от таких сильных кислот, как азотная и серная. Это качество нашло распространение в химии и промышленности для транспортировки концентрированной азотной кислоты.

Разрушить пленку можно сильно разбавленной азотной кислотой, щелочами при нагреве или при контакте с ртутью, когда на поверхности образуется амальгама. В перечисленных случаях оксидная пленка не является защитным фактором и алюминий активно взаимодействует с кислотами, щелочами и окислителями. Оксидная пленка также легко разрушается в присутствии галогенов (хлор, бром). Таким образом, соляная кислота HCl, хорошо взаимодействует с алюминием при любых условиях.

Химические свойства алюминия зависят от чистоты металла. Использование состава легирующих присадок некоторых металлов, в частности марганца, позволяет увеличить прочность защитной пленки, повысив, таким образом, коррозионную устойчивость алюминия. Некоторые металлы, к примеру, никель и железо, способствуют снижению коррозионную стойкость, но повышают жароустойчивость сплавов.

Оксидная пленка на поверхности алюминиевых изделий играет отрицательную роль при проведении сварочных работ. Мгновенное окисление ванны расплавленного металла при сварке не позволяет сформировать сварочный шов, поскольку окись алюминия имеет очень высокую температуру плавления. Для сварки алюминия используют специальные сварочные аппараты с неплавящимся электродом (вольфрам). Сам процесс ведется в среде инертного газа – аргона. При отсутствии процесса окисления сварочный шов получается прочным, монолитным. Некоторые легирующие добавки в сплавы дополнительно улучшают сварочные свойства алюминия.

Чистый алюминий практически не образует ядовитых соединений, поэтому активно используется в пищевой промышленности при производстве кухонной посуды, упаковки пищевых продуктов, тары для напитков. Оказывать негативное действие могут лишь некоторые неорганические соединения. Исследованиями также установлено, что алюминий не используется в метаболизме живых существ, его роль в жизнедеятельности ничтожна.

Алюминий – элемент с порядковым номером 13, относительной атомной массой – 26,98154. Находится в III периоде, III группе, главной подгруппе. Электронная конфигурация: 1s 2 2s 2 2p 6 3s 2 3p 1 3d 0 . Устойчивая степень окисления алюминия – «+3». Образующийся при этом катион обладает оболочкой благородного газа, что способствует его устойчивости, но отношение заряда к радиусу, то есть концентрация заряда, достаточно высоки, что повышает энергию катиона. Эта особенность приводит к тому, что алюминий наряду с ионными соединениями образует целый ряд ковалентных соединений, а его катион подвергается в растворе значительному гидролизу.

Валентность I алюминий может проявлять только при температуре выше 1500 о С. Известны Al 2 O и AlCl.

По физическим свойствам алюминий – типичный металл, с высокой тепло- и электропроводностью, уступающий только серебру и меди. Потенциал ионизации алюминия не очень высок, поэтому от него можно было бы ожидать большой химической активности, но она значительно снижена из-за того, что на воздухе металл пассивируется за счет образования на его поверхности прочной оксидной пленки. Если металл активизировать: а) механически удалить пленку, б) амальгамировать (привести во взаимодействие с ртутью), в) использовать порошок, то такой металл становится настолько реакционноспособным, что взаимодействует даже с влагой и кислородом воздуха, разрушаясь при этом в соответствии с процессом:

4(Al,Hg) +3O 2 + 6H 2 O = 4Al(OH) 3 + (Hg)

Взаимодействие с простыми веществами.

1. Порошкообразный алюминий при сильном нагревании реагирует с кислородом. Эти условия нужны из-за пассивации, а сама реакция образования оксида алюминия сильно экзотермична – выделяется 1676 кДж/моль теплоты.

2. С хлором и бромом реагирует при стандартных условиях, способен даже загораться в их среде. Не реагирует только с фтором, т.к. фторид алюминия, подобно оксиду, образует на поверхности металла защитную солевую пленку. С иодом реагирует при нагревании и в присутствии воды как катализатора.

3. С серой реагирует при сплавлении, давая сульфид алюминия состава Al 2 S 3 .

4. C фосфором также реагирует при нагревании с образованием фосфида: AlP.

5. Непосредственно с водородом алюминий не взаимодействует.

6. С азотом взаимодействует при 800 о С, давая нитрид алюминия (AlN). Следует сказать, что горение алюминия на воздухе происходит примерно при таких температурах, поэтому продуктами горения (с учетом состава воздуха) являются одновременно и оксид, и нитрид.

7. С углеродом алюминий взаимодействует при еще более высокой температуре: 2000 о С. Карбид алюминия состава Al 4 C 3 относится к метанидам, в его составе нет связей С-С, и при гидролизе выделяется метан: Al 4 C 3 + 12H 2 O = 4Al(OH) 3 + 3CH 4

Взаимодействие со сложными веществами

1. С водой активированный (лишенный защитной пленки) алюминий активно взаимодействует с выделением водорода: 2Al (акт.) + 6H 2 O = 2Al(OH) 3 + 3H 2 Гидроксид алюминия получается в виде белого рыхлого порошка, отсутствие пленки не мешает прохождению реакции до конца.

2. Взаимодействие с кислотами: а) С кислотами-неокислителями алюминий активно взаимодействует в соответствии с уравнением: 2Al + 6H 3 O + + 6H 2 O = 2 3+ + 3H 2 ,

б) С кислотами-окислителями взаимодействие происходит со следующими особенностями. Концентрированные азотная и серная кислоты, а также очень разбавленная азотная кислота пассивируют алюминий (быстрое окисление поверхности приводит к образованию оксидной пленки) на холоду. При нагревании пленка нарушается, и реакция проходит, но из концентрированных кислот при нагревании выделяются только продукты их минимального восстановления: 2Al + 6H 2 SO 4 (конц) = Al 2 (SO 4) 3 + 3SO 2 6H 2 O Al + 6HNO 3 (конц) = Al(NO 3) 3 + 3NO 2 + 3H 2 O С умеренно разбавленной азотной кислотой в зависимости от условий реакции можно получить NO, N 2 O, N 2 , NH 4 + .

3. Взаимодействие со щелочами. Алюминий является амфотерным элементом (по химическим свойствам), т.к. обладает достаточно большой для металлов электроотрицательностью – 1,61. Поэтому он достаточно легко растворяется в растворах щелочей с образованием гидроксокомплексов и водорода. Состав гидроксокомплекса зависит от соотношения реагентов: 2Al + 2NaOH + 6H 2 O = 2Na + 3H 2 2Al + 6NaOH + 6H 2 O = 2Na 3 + 3H 2 Соотношение алюминия и водорода определяется электронным балансом происходящей между ними окислительно-восстановительной реакции и от соотношения реагентов не зависит.

4. Низкий потенциал ионизации и большое сродство к кислороду (большая устойчивость оксида) приводят к тому, что алюминий активно взаимодействует с оксидами многих металлов, восстанавливая их. Реакции проходят при начальном нагревании с дальнейшим выделением теплоты, так что температура повышается до 1200 о – 3000 о С. Смесь 75% алюминиевого порошка и 25% (по массе) Fe 3 O 4 называют «термитом». Раньше реакцию горения этой смеси использовали для сварки рельсов. Восстановление металлов из оксидов при помощи алюминия называется алюмотермией и используется в промышленности как способ получения таких металлов как марганец, хром, ванадий, вольфрам, ферросплавы.

5. С растворами солей алюминий взаимодействует двумя разными способами. 1. Если в результате гидролиза раствор соли имеет кислую или щелочную среду, происходит выделение водорода (с кислыми растворами реакция идет только при значительном нагревании, т.к. защитная оксидная пленка лучше растворяется в щелочах, чем в кислотах). 2Al + 6KHSO 4 + (H 2 O) = Al 2 (SO 4) 3 + 3K 2 SO 4 +3H 2 2Al + 2K 2 CO 3 + 8H 2 O = 2K + 2KHCO 3 + 3H 2 . 2. Алюминий может вытеснять из состава соли металлы, стоящие в ряду напряжения правее, чем он, т.е. фактически будет окисляться катионами этих металлов. Из-за оксидной пленки эта реакция проходит не всегда. Например, хлорид-анионы способны нарушать пленку, и реакция 2Al + 3FeCl 2 = 2AlCl 3 + 3Fe проходит, а аналогичная реакция с сульфатами при комнатной температуре не пойдет. С активированным алюминием любое взаимодействие, не противоречащее общему правилу, пойдет.

Соединения алюминия.

1. Оксид (Al 2 O 3). Известен в виде нескольких модификаций, большинство из которых очень прочны и химически инертны. Модификация α-Al 2 O 3 встречается в природе в виде минерала корунд. В кристаллической решетке этого соединения катионы алюминия иногда частично замещены на катионы других металлов, что придает минералу окраску. Примесь Cr(III) дает красный цвет, такой корунд – это уже драгоценный камень рубин. Примесь Ti(III) и Fe(III) дает сапфир синего цвета. Химически активна аморфная модификация. Оксид алюминия – типичный амфотерный оксид, реагирующий как с кислотами и кислотными оксидами, так и со щелочами и основными оксидами, причем со щелочами предпочтительнее. Продукты реакции в растворе и в твердой фазе при сплавлении отличаются: Na 2 O + Al 2 O 3 = 2NaAlO 2 (сплавление) – метаалюминат натрия, 6NaOH + Al 2 O 3 = 2Na 3 AlO 3 + 3H 2 O (сплавление) – ортоалюминат натрия, Al 2 O 3 + 3CrO 3 = Al 2 (CrO 4) 3 (сплавление) – хромат алюминия. Кроме оксидов и твердых щелочей алюминий при сплавлении реагирует с солями, образованными летучими кислотными оксидами, вытесняя их из состава соли: K 2 CO 3 + Al 2 O 3 = 2KAlO 2 + CO 2 Реакции в растворе: Al 2 O 3 + 6HCl = 2 3+ + 6Cl 1- + 3H 2 O Al 2 O 3 +2 NaOH + 3H 2 O =2 Na – тетрагидроксоалюминат натрия. Тетрагидроксоалюминат-анион на самом деле является тетрагидроксодиакваанионом 1- , т.к. координационное число 6 для алюминия предпочтительнее. При избытке щелочи образуется гексагидроксоалюминат: Al 2 O 3 + 6NaOH + 3H 2 O = 2Na 3 . Кроме кислот и щелочей можно ожидать реакций с кислыми солями: 6KHSO 4 + Al 2 O 3 = 3K 2 SO 4 + Al 2 (SO 4) 3 + 3H 2 O.

3. Гидроксиды алюминия . Известно два гидроксида алюминия – метагидроксид –AlO(OH) и ортогидроксид – Al(OH) 3 . Оба они в воде не растворяются, но также являются амфотерными, поэтому растворяются в растворах кислот и щелочей, а также солей, имеющих кислую или щелочную среду в результате гидролиза. При сплавлении гидроксиды реагируют аналогично оксиду. Как все нерастворимые основания гидроксиды алюминия при нагревании разлагаются: 2Al(OH) 3 = Al 2 O 3 + 3H 2 O. Растворяясь в щелочных растворах, гидроксиды алюминия не растворяются в водном аммиаке, поэтому их можно осадить аммиаком из растворимой соли: Al(NO 3) 3 + 3NH 3 + 2H 2 O = AlO(OH)↓ + 3NH 4 NO 3 , по этой реакции получается именно метагидроксид. Осадить гидроксид действием щелочей сложно, т.к. получившийся осадок легко растворяется, и суммарная реакция имеет вид: AlCl 3 +4 NaOH = Na + 3NaCl

4. Соли алюминия. Почти все соли алюминия хорошо растворимы в воде. Нерастворимы фосфат AlPO 4 и фторид AlF 3 . Т.к. катион алюминия имеет большую концентрацию заряда, его аквакомплекс приобретает свойства катионной кислоты: 3+ + H 2 O = H 3 O + + 2+ , т.е. соли алюминия подвергаются сильному гидролизу по катиону. В случае солей слабых кислот из-за взаимного усиления гидролиза по катиону и аниону гидролиз становится необратимым. В растворе полностью разлагаются водой или не могут быть получены по реакции обмена карбонат, сульфит, сульфид и силикат алюминия: Al 2 S 3 + 6H 2 O = 2Al(OH) 3 ↓ + 3H 2 S 2Al(NO 3) 3 + 3K 2 CO 3 + 3H 2 O = 2Al(OH) 3 ↓ + 3CO 2 + 6KNO 3 . Для некоторых солей гидролиз становится необратимым при нагревании. Влажный ацетат алюминия при нагревании разлагается в соответствии с уравнением: 2Al(OOCCH 3) 3 + 3H 2 O = Al 2 O 3 + 6CH 3 COOH В случае галогенидов алюминия разложению соли способствует уменьшение растворимости газообразных галогеноводородов при нагревании: AlCl 3 + 3H 2 O = Al(OH) 3 ↓ + 3HCl. Из галогенидов алюминия только фторид является ионным соединением, остальные галогениды – ковалентные соединения, их температуры плавления существенно ниже, чем у фторида, хлорид алюминия способен возгоняться. При очень высокой температуре в парах находятся одиночные молекулы галогенидов алюминия, имеющие плоское треугольное строение из-за sp 2 -гибридизации атомных орбиталей центрального атома. Основное состояние этих соединений в парах и в некоторых органических растворителях – это димеры, например, Al 2 Cl 6 . Галогениды алюминия являются сильными кислотами Льюиса, т.к. имеют вакантную атомную орбиталь. Растворение в воде, поэтому происходит с выделением большого количества теплоты. Интересным классом соединений алюминия (как и других трехвалентных металлов) являются квасцы – 12-водные двойные сульфаты M I M III (SO 4) 2 , которые при растворении как все двойные соли дают смесь соответствующих катионов и анионов.

5. Комплексные соединения. Рассмотрим гидроксокомплексы алюминия. Это соли, в которых комплексная частица является анионом. Все соли растворимые. Разрушаются при взаимодействии с кислотами. При этом сильные кислоты растворяют образующийся ортогидроксид, а слабые или соответствующие им кислотные оксиды (H 2 S, CO 2 , SO 2) его осаждают: K +4HCl = KCl + AlCl 3 + 4H 2 O K + CO 2 = Al(OH) 3 ↓ + KHCO 3

При прокаливании гидроксоалюминаты превращаются в орто - или метаалюминаты, теряя воду.

Железо

Элемент с порядковым номером 26, с относительной атомной массой 55,847. Относится к 3d-семейству элементов, имеет электронную конфигурацию: 3d 6 4s 2 и в периодической системе находится в IV периоде, VIII группе, побочной подгруппе. В соединениях железо преимущественно проявляет степени окисления +2 и +3. Ион Fe 3+ имеет наполовину заполненную d-электронную оболочку, 3d 5 , что придает ему дополнительную устойчивость. Значительно труднее достигаются степени окисления +4, +6, +8.

По физическим свойствам железо – серебристо-белый, блестящий, относительно мягкий, ковкий, легко намагничивающийся и размагничивающийся металл. Температура плавления 1539 о С. Имеет несколько аллотропных модификаций, отличающихся типом кристаллической решетки.

Свойства простого вещества.

1. При горении на воздухе образует смешанный оксид Fe 3 O 4 , а при взаимодействии с чистым кислородом – Fe 2 O 3 . Порошкообразное железо пирофорно – самовоспламеняется на воздухе.

2. Фтор, хлор и бром легко реагируют с железом, окисляя его до Fe 3+ . С иодом образуется FeJ 2 , так как трехвалентный катион железа окисляет иодид-анион, в связи с чем, соединения FeJ 3 не существует.

3. По аналогичной причине не существует соединения Fe 2 S 3 , а взаимодействие железа и серы при температуре плавления серы приводит к соединению FeS. При избытке серы получается пирит – дисульфид железа (II) – FeS 2 . Образуются также нестехиометрические соединения.

4. С остальными неметаллами железо реагирует при сильном нагревании, образуя твердые растворы или металлоподобные соединения. Можно привести реакцию, идущую при 500 о С: 3Fe + C = Fe 3 C. Такое соединение железа и углерода называется цементит.

5. Со многими металлами железо образует сплавы.

6. На воздухе при комнатной температуре железо покрыто оксидной пленкой, поэтому с водой не взаимодействует. Взаимодействие с перегретым паром дает следующие продукты: 3Fe + 4H 2 O (пар) = Fe 3 O 4 + 4H 2 . В присутствии кислорода железо взаимодействует даже с влагой воздуха: 4Fe + 3O 2 + 6H 2 O = 4Fe(OH) 3 . Приведенное уравнение отражает процесс ржавления, которому подвергается в год до 10% металлических изделий.

7. Так как железо стоит в ряду напряжения до водорода, оно легко реагирует с кислотами-неокислителями, но окисляется при этом только до Fe 2+ .

8. Концентрированные азотная и серная кислоты пассивируют железо, но при нагревании реакция происходит. Разбавленная азотная кислота реагирует и при комнатной температуре. Со всеми кислотами-окислителями железо дает соли железа (III) (по некоторым сведениям, с разбавленной азотной кислотой возможно образование нитрата железа (II)), а восстанавливает HNO 3 (разб.) до NO, N 2 O, N 2 , NH 4 + в зависимости от условий, а HNO 3 (конц.) – до NO 2 из-за нагревания, которое необходимо для прохождения реакции.

9. Железо способно реагировать с концентрированными (50%) щелочами при нагревании: Fe + 2KOH + 2H 2 O = K 2 + H 2

10. Реагируя с растворами солей менее активных металлов, железо вытеняет эти металлы из состава соли, превращаясь в двухвалентный катион: CuCl 2 + Fe = FeCl 2 + Cu.

Свойства соединений железа.

Fe 2+ Отношение заряда к радиусу данного катиона близко к таковому у Mg 2+ , поэтому химическое поведение оксида, гидроксида и солей двухвалентного железа подобно поведению соответствующих соединений магния. В водном растворе катион двухвалентного железа образует аквакомплекс 2+ бледно-зеленого цвета. Этот катион легко окисляется даже прямо в растворе кислородом воздуха. В растворе FeCl 2 содержатся комплексные частицы 0 . Концентрация заряда такого катиона невелика, поэтому гидролиз солей умеренный.

1. FeO - основной оксид, черного цвета, в воде не растворяется. Легко растворяется в кислотах. При нагревании свыше 500 0 С диспропорционирует: 4FeO = Fe + Fe 3 O 4 . Он может быть получен при осторожном прокаливании соответствующих гидроксида, карбоната и оксалата, тогда как термическое разложение других солей Fe 2+ приводит к образованию оксида трехвалентного железа: FeC 2 O 4 = FeO + CO + CO 2 ­ , но 2 FeSO 4 = Fe 2 O 3 + SO 2 + SO 3 4Fe(NO 3) 2 = 2Fe 2 O 3 + 8NO 2 + O 2 Сам оксид железа (II) может выступать как окислитель, например, при нагревании идет реакция: 3FeO + 2NH 3 = 3Fe + N 2 +3H 2 O

2. Fe(OH) 2 – гидроксид железа (II) – нерастворимое основание. Реагирует с кислотами. С кислотами-окислителями происходит одновременно кислотно-основное взаимодействие и окисление до трехвалентного железа: 2Fe(OH) 2 + 4H 2 SO 4 (конц) = Fe 2 (SO 4) 3 + SO 2 + 4H 2 O. Может быть получен по обменной реакции из растворимой соли. Это соединение белого цвета, которое на воздухе сначала зеленеет из-за взаимодействия с влагой воздуха, а затем буреет из-за окисления кислородом воздуха: 4Fe(OH) 2 + 2H 2 O + O 2 = 4Fe(OH) 3 .

3. Соли. Как уже говорилось, большинство солей Fe(II) медленно окисляются на воздухе или в растворе. Наиболее устойчивой к окислению является соль Мора – двойной сульфат железа (II) и аммония: (NH 4) 2 Fe(SO 4) 2 . 6H 2 O. Катион Fe 2+ легко окисляется до Fe 3+ , поэтому большинство окислителей, в частности, кислоты-окислители окисляют соли двухвалентного железа. При обжиге сульфида и дисульфида железа получается оксид железа (III) и оксид серы (IV): 4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2 Сульфид железа (II) растворяется также в сильных кислотах: FeS + 2HCl = FeCl 2 + 2H 2 S Карбонат железа (II) нерастворим, тогда как гидрокарбонат в воде растворяется.

Fe 3+ По отношению заряда к радиусу данный катион соответствует катиону алюминия, поэтому свойства соединений катиона железа (III) аналогичны соответствующим соединениям алюминия.

Fe 2 O 3 – гематит, амфотерный оксид, у которого преобладают основные свойства. Амфотерность проявляется в возможности сплавления с твердыми щелочами и карбонатами щелочных металлов: Fe 2 O 3 + 2NaOH = H 2 O + 2NaFeO 2 – желтого или красного цвета, Fe 2 O 3 + Na 2 CO 3 = 2NaFeO 2 + CO 2 . Ферраты (II) разлагаются водой с выделением Fe 2 O 3 . nH 2 O.

Fe 3 O 4 - магнетит, вещество черного цвета, которое можно рассматривать либо как смешанный оксид – FeO . Fe 2 O 3 , либо как оксометаферрат (III) железа (II): Fe(FeO 2) 2 . При взаимодействии с кислотами дает смесь солей: Fe 3 O 4 + 8HCl = FeCl 2 + 2FeCl 3 + 4H 2 O.

Fe(OH) 3 или FeO(OH) – красно-бурый студенистый осадок, амфотерный гидроксид. Кроме взаимодействий с кислотами реагирует с горячим концентрированным раствором щелочи и сплавляется с твердыми щелочами и карбонатами: Fe(OH) 3 + 3KOH = K 3 .

Соли. Большинство солей трехвалентного железа растворимо. Так же как соли алюминия, они подвергаются сильному гидролизу по катиону, который в присутствии анионов слабых и нестойких или нерастворимых кислот может стать необратимым: 2FeCl 3 + 3Na 2 CO 3 + 3H 2 O = 2Fe(OH) 3 + 3CO 2 + 6NaCl. При кипячении раствора хлорида железа (III) гидролиз также можно сделать необратимым, т.к. растворимость хлороводорода как любого газа при нагревании уменьшается и он уходит из сферы реакции: FeCl 3 + 3H 2 O = Fe(OH) 3 + 3HCl (при нагревании).

Окислительная способность данного катиона очень высока, особенно, по отношению к превращению в катион Fe 2+ : Fe 3+ + ē = Fe 2+ φ o =0,77в. В результате чего:

а) растворы солей трехвалентного железа окисляют все металлы вплоть до меди: 2Fe(NO 3) 3 + Cu = 2Fe(NO 3) 2 + Cu(NO 3) 2 ,

б) обменные реакции с солями, содержащими легко окисляемые анионы, проходят одновременно с их окислением: 2FeCl 3 + 2KJ = FeCl 2 + J 2 + 2KCl 2FeCl 3 + 3Na 2 S = 2FeS + S + 6NaCl

Как и другие трехвалентные катионы, железо (III) способно к образованию квасцов – двойных сульфатов с катионами щелочных металлов или аммония, например: NH 4 Fe(SO 4) 2 . 12H 2 O.

Комплексные соединения. Оба катиона железа склонны к образованию анионных комплексов, особенно железо (III). FeCl 3 + KCl = K, FeCl 3 + Cl 2 = Cl + - . Последняя реакция отражает действие хлорида железа (III) как катализатора электрофильного хлорирования. Интерес представляют цианидные комплексы: 6KCN + FeSO 4 = K 4 – гексацианоферрат (II) калия, желтая кровяная соль. 2K 4 + Cl 2 = 2K 3 + 2KCl – гексацианоферрат (III) калия, красная кровяная соль. Комплекс двухвалентного железа дает с солью трехвалентного железа синий осадок или раствор в зависимости от соотношения реагентов. Такая же реакция происходит между красной кровяной солью и любой солью двухвалентного железа. В первом случае осадок называли берлинской лазурью, во втором – турнбулевой синью. Позже выяснилось, что, по крайней мере, растворы имеют одинаковый состав: K – гексацианоферрат железа (II,III) калия. Описанные реакции являются качественными на наличие в растворе соответствующих катионов железа. Качественной реакцией на наличие катиона трехвалентного железа является появленме кроваво-красной окраски при взаимодействии с тиоцианатом (роданидом) калия:2FeCl 3 + 6KCNS = 6KCl + Fe.

Fe +6 . Степень окисления +6 для железа малоустойчива. Удается получить только анион FeO 4 2- , который существует только при pH>7-9, но при этом является сильным окислителем.

Fe 2 O 3 + 4KOH + 3KNO 3 = 2K 2 FeO 4 + 3KNO 2 + 2H 2 O

Fe (опилки) + H 2 O + KOH + KNO 3 = K 2 FeO 4 + KNO 2 + H 2

2Fe(OH) 3 + 3Cl 2 + 10KOH = 2K 2 FeO 4 + 6KCl + 6H 2 O

Fe 2 O 3 + KClO 3 + 4KOH = 2K 2 FeO 4 + KCl + 2H 2 O

4K 2 FeO 4 + 6H 2 O = 4FeO(OH)↓ + 8KOH + 3O 2

4BaFeO 4 (нагревание) = 4BaO + 2Fe 2 O 3 + 3O 2

2K 2 FeO 4 + 2CrCl 3 + 2HCl = FeCl 3 + K 2 Cr 2 O 7 + 2KCl + H 2 O

Получение железа в промышленности:

А) доменный процесс: Fe 2 O 3 + C = 2FeO + CO

FeO + C = Fe + CO

FeO + CO = Fe + CO 2

Б) алюмотермия: Fe 2 O 3 + Al = Al 2 O 3 + Fe

ХРОМ – элемент с порядковым номером 24, с относительной атомной массой 51,996. Относится к 3d-семейству элементов, имеет электронную конфигурацию 3d 5 4s 1 и в периодической системе находится в IV периоде, VI группе, побочной подгруппе. Возможные степени окисления: +1, +2, +3, +4, +5, +6. Из них наиболее устойчивыми являются +2, +3, +6, а минимальной энергией обладает +3.

По физическим свойствам хром – серовато-белый, блестящий, твердый металл с температурой плавления 1890 о С. Прочность его кристаллической решетки обусловлена наличием пяти неспаренных d-электронов, способных к частичному ковалентному связыванию.

Химические свойства простого вещества.

При низких температурах хром инертен из-за наличия оксидной пленки, не взаимодействует с водой и воздухом.

1. С кислородом взаимодействует при температурах выше 600 о С. При этом образуется оксид хрома (III) – Cr 2 O 3 .

2. Взаимодействие с галогенами происходит по-разному: Cr + 2F 2 = CrF 4 (при комнатной температуре), 2Cr + 3Cl 2 (Br 2) = 2CrCl 3 (Br 3), Cr + J 2 = CrJ 2 (при значительном нагревании). Следует сказать, что иодид хрома (III) может существовать и получается по обменной реакции в виде кристаллогидрата CrJ 3 . 9H 2 O, но его термическая устойчивость невелика, и при нагревании он разлагается на CrJ 2 и J 2 .

3. При температуре выше 120 о С хром взаимодействует с расплавленной серой, давая сульфид хрома (II) – CrS (черного цвета).

4. При температурах выше 1000 о С хром реагирует с азотом и углеродом, давая нестехиометрические, химически инертные соединения. Среди них можно отметить карбид с примерным составом CrC, который по твердости приближается к алмазу.

5. С водородом хром не реагирует.

6. Реакция с водяным паром проходит следующим образом: 2Cr + 3H 2 O = Cr 2 O 3 + 3H 2

7. Реакция с кислотами-неокислителями происходит достаточно легко, при этом образуется аква-комплекс 2+ небесно-голубого цвета, который устойчив только в отсутствие воздуха или в атмосфере водорода. В присутствии кислорода реакция идет иначе: 4Cr + 12HCl + 3O 2 = 4CrCl 3 + 6H 2 O. Разбавленные кислоты, насыщенные кислородом, даже пассивируют хром за счет образования на поверхности прочной оксидной пленки.

8. Кислоты- окислители: азотная кислота любой концентрации, серная концентрированная, хлорная кислота пассивируют хром так, что после обработки поверхности этими кислотами он уже не реагирует и с другими кислотами. Пассивация снимается при нагревании. При этом получаются соли хрома (III) и диоксиды серы или азота (из хлорной кислоты – хлорид). Пассивация за счет образования солевой пленки происходит при взаимодействии хрома с фосфорной кислотой.

9. Непосредственно со щелочью хром не реагирует, но вступает в реакцию со щелочными расплавами с добавлением окислителей: 2Cr + 2Na 2 CO 3 (ж) + 3O 2 = 2Na 2 CrO 4 + 2CO 2

10. Хром способен реагировать с растворами солей, вытесняя менее активные металлы (стоящие правее него в ряду напряжения) из состава соли. Сам хром при этом превращается в катион Cr 2+ .

ОПРЕДЕЛЕНИЕ

Алюминий – химический элемент 3 периода IIIA группы. Порядковый номер – 13. Металл. Алюминий относится к элементам p -семейства. Символ – Al.

Атомная масса – 27 а.е.м. Электронная конфигурация внешнего энергетического уровня – 3s 2 3p 1 . В своих соединениях алюминий проявляет степень окисления равную «+3».

Химические свойства алюминия

Алюминий в реакциях проявляет восстановительные свойства. Поскольку при пребывании на воздухе на его поверхности образуется оксидная пленка, устойчив к взаимодействию с другими веществами. Например, алюминий пассивируется в воде, концентрированной азотной кислоте и растворе дихромата калия. Однако, после удаления с его поверхности оксидной пленки способен взаимодействовать с простыми веществами. Большинство реакций протекает при нагревании:

2Al powder +3/2O 2 = Al 2 O 3 ;

2Al + 3F 2 = 2AlF 3 (t);

2Al powder + 3Hal 2 = 2AlHal 3 (t = 25C);

2Al + N 2 = 2AlN (t);

2Al +3S = Al 2 S 3 (t);

4Al + 3C graphite = Al 4 C 3 (t);

4Al + P 4 = 4AlP (t, в атмосфере Н 2).

Также, алюминий после удаления с его поверхности оксидной пленки способен взаимодействовать с водой с образованием гидроксида:

2Al + 6H 2 O = 2Al(OH) 3 +3H 2 .

Алюминий проявляет амфотерные свойства, поэтому он способен растворяться в разбавленных растворах кислот и щелочах:

2Al + 3H 2 SO 4 (dilute) = Al 2 (SO 4) 3 + 3H 2 ;

2Al + 6HCl dilute = 2AlCl 3 + 3 H 2 ;

8Al + 30HNO 3 (dilute) = 8Al(NO 3) 3 + 3N 2 O + 15H 2 O;

2Al +2NaOH +3H 2 O = 2Na + 3H 2 ;

2Al + 2(NaOH×H 2 O) = 2NaAlO 2 + 3 H 2 .

Алюмиотермия – способ получения металлов из их оксидов, основанный на восстановлении этих металлов алюминием:

8Al + 3Fe 3 O 4 = 4Al 2 O 3 + 9Fe;

2Al + Cr 2 O 3 = Al 2 O 3 +2Cr.

Физические свойства алюминия

Алюминий представляет собой серебристо-белого цвета. Основные физические свойства алюминия – легкость, высокая тепло- и электропроводность. В свободном состоянии при пребывании на воздухе алюминий покрывается прочной пленкой оксида Al 2 O 3 , которая делает его устойчивым к действию концентрированных кислот. Температура плавления – 660,37С, кипения – 2500С.

Получение и применение алюминия

Алюминий получают электролизом расплава оксида этого элемента:

2Al 2 O 3 = 4Al + 3O 2

Однако из-за небольшого выхода продукта, чаще используют способ получения алюминия электролизом смеси Na 3 и Al 2 O 3 . Реакция протекает при нагревании до 960С и в присутствии катализаторов – фторидов (AlF 3 , CaF 2 и др.), при этом на выделение алюминия происходит на катоде, а на аноде выделяется кислород.

Алюминий нашел широкое применение в промышленности, так, сплавы на основе алюминия – основные конструкционные материалы в самолето- и судостроении.

Примеры решения задач

ПРИМЕР 1

Задание при взаимодействии алюминия с серной кислотой образовался сульфат алюминия массой 3,42 г. Определите массу и количество вещества алюминия, вступившего в реакцию.
Решение Запишем уравнение реакции:

2Al + 3H 2 SO 4 = Al 2 (SO 4) 3 + 3H 2 .

Молярные массы алюминия и сульфата алюминия, рассчитанные с использованием таблицы химических элементов Д.И. Менделеева – 27 и 342 г/моль, соответственно. Тогда, количество вещества образовавшегося сульфата алюминия будет равно:

n(Al 2 (SO 4) 3) = m(Al 2 (SO 4) 3) / M(Al 2 (SO 4) 3);

n(Al 2 (SO 4) 3) = 3,42 / 342 = 0,01 моль.

Согласно уравнению реакции n(Al 2 (SO 4) 3): n(Al) = 1:2, следовательно n(Al) = 2×n(Al 2 (SO 4) 3) = 0,02 моль. Тогда, масса алюминия будет равна:

m(Al) = n(Al)×M(Al);

m(Al) = 0,02×27 = 0,54 г.

Ответ Количество вещества алюминия – 0,02 моль; масса алюминия – 0,54 г.

Алюминия оксид (глинозем) А1 2 О 3 , бесцв. кристаллы ; т. пл. 2044°С; т. кип. 3530 °С. Единственная стабильная до 2044°С кристаллич. модификация алюминия оксида-А1 2 О 3 (корунд ): решетка ромбоэдрич., а = 0,512 нм,= 55,25° (для гексагон. установки а = 0,475 нм, с = 1,299 нм, пространств. группа D 6 3d , z = 2); плотн. 3,99 г/см 3 ;Н° пл 111,4 кДж/моль ; ур-ния температурной зависимости: теплоемкости С° р = = 114,4 + 12,9*10 -3 Т - 34,3*10 5 Т 2 ДжДмоль*К) (298Т 1800 К), давления пара Igp (Па) = -54800/7+1,68 (до ~ 3500 К); температурный коэф. линейного расширения (7,2-8,6)*10 -6 К -1 (300Т1200 К); теплопроводность спеченного при 730°С образца 0,35 Вт/(моль*К); твердость по Моосу 9; показатель преломления для обыкновенного луча n 0 1,765, для необыкновенного п е 1,759.

Оксид алюминия (Al2O3) обладает исключительным набором свойств, таких как:

  • Высокая твердость
  • Хорошая теплопроводность
  • Отличная коррозионная стойкость
  • Низкая плотность
  • Сохранение прочности в широком диапазоне температур
  • Электроизоляционные свойства
  • Невысокая стоимость относительно других керамических материалов

Все эти сочетания делают материал не заменимым при изготовлении коррозионностойких, износостойких, электроизоляционных и термостойких изделий для самых различных отраслей промышленности.

Основные области применения:

  • Футеровка мельниц, гидроциклонов, бетономешалок, экструдеров, транспортеров, труб и прочего изнашиваемого оборудования
  • Кольца торцовых уплотнений
  • Фильеры, проводки, направляющие
  • Подшипники скольжения, валы и футеровка проточных частей химических насосов
  • Мелящие тела
  • Части бумагоделательного оборудования
  • Горелки
  • Насадки экструдеров (керны)
  • Тигли
  • Элементы клапанов и запорной арматуры
  • Сопла для аппаратов аргонно-дуговой сварки
  • Электроизоляторы

Существует несколько модификаций оксида алюминия в зависимости от содержания основной фазы и примесей, которые отличаются прочностью и химической стойкостью

Гидроксид алюминия

Гидроксид алюминия Al(OH) 3 – бесцветное твердое вещество, нерастворимое в воде, входит в состав многих бокситов. Существует в четырех полиморфных модификациях. На холоде образуется α-Al(OH) 3 – байерит, а при осаждении из горячего раствора γ-Al(OH) 3 – гиббсит (гидаргилит), обе кристаллизуются в моноклинной сингонии, имеют слоистое строение, слои состоят из октаэдров , между слоями действует водородная связь. Существует также триклинный гиббсит γ’-Al(OH) 3 , триклинный нордстрандит β-Al(OH) 3 и две модификации оксогидроксида AlOOH – орторомбические бемит и диаспор. Аморфный гидроксид алюминия имеет переменный состав Al 2 O 3 · nH 2 O. При нагревании выше 180°С разлагается.

Химические свойства

Гидроксид алюминия – типичное амфотерное соединение, свежеполученный гидроксид растворяется в кислотах и щелочах:

2Al(OH) 3 + 6HCl = 2AlCl 3 + 6H 2 O

Al(OH) 3 + NaOH + 2H 2 O = Na.

При нагревании разлагается, процесс дегидратации довольно сложен и схематично может быть представлен следующим образом:

Al(OH) 3 = AlOOH + H 2 O;

2AlOOH = Al 2 O 3 + H 2 O.

Гидроксид алюминия - химическое вещество, которое представляет собой соединение оксида алюминия с водой. Может пребывать в жидком и твердом состояниях. Жидкий гидроксид является желеподобным прозрачным веществом, которое очень плохо растворяется в воде. Твердый гидроксид представляет собой кристаллическое вещество белого цвета, которое обладает пассивными химическими свойствами и не реагирует практически ни с одним другим элементом или соединением.

Хлорид алюминия

При обычном давлении возгоняется при 183 °C (под давлением плавится при 192,6 °C). В воде хорошо растворим (44,38 г в 100 г H 2 O при 25 °C); вследствие гидролиза дымит во влажном воздухе, выделяя HCl. Из водных растворов выпадает кристаллогидрат AlCl 3 · 6H 2 O - желтовато-белые расплывающиеся кристаллы. Хорошо растворим во многих органических соединениях (в этаноле - 100 г в 100 г спирта при 25 °C, в ацетоне, дихлорэтане , этиленгликоле, нитробензоле, тетрахлоруглероде и др.); однако практически не растворяется в бензоле и толуоле.

Сульфат алюминия

Сульфат алюминия - это соль белого цвета с серым, голубым или розовым оттенком, при обычных условиях существует в виде кристаллогидрата Al 2 (SO 4) 3 ·18H 2 O - бесцветных кристаллов. При нагревании теряет воду не плавясь, при прокаливании распадается на Al 2 O 3 и SO 3 и O 2 . Хорошо растворяется в воде. Технический сульфат алюминия можно получить, обрабатывая серной кислотой боксит или глину, а чистый продукт, - растворяя Al(OH) 3 в горячей концентрированной H 2 SO 4 .

Сульфат алюминия применяется как коагулянт для очистки воды хозяйственно-питьевого и промышленного назначения и для использования в бумажной, текстильной, кожевенной и других отраслях промышленности.

Используется в качестве пищевой добавки E-520

Карбид алюминия

Карбид алюминия получается прямой реакцией алюминия с углеродом в дуговой печи.

4 A l + 3 C ⟶ A l 4 C 3 {\displaystyle {\mathsf {4Al+3C\longrightarrow Al_{4}C_ Небольшое количество карбида алюминия является нормой в примеси технического карбида кальция. В электролитическом производстве алюминия данное соединение получается как продукт коррозии в графитовых электродах. Получается при реакции углерода с оксидом алюминия:

Железо с алюминием

Ални - группа магнитотвёрдых (высококоэрцитивных) сплавов железо (Fe) - никель (Ni) - алюминий (Al).

Легирование ални-сплавов улучшает их магнитные характеристики, применяется легирование медью (например, сплав 24 % никеля, 4 % меди, 13 % алюминия и 59 % железа), кобальтом (сплавы альнико и магнико ). Примесь углерода снижает магнитные свойства сплава, его содержание не должно превышать 0,03 %.

Ални-сплавы характеризуются высокой твёрдостью и хрупкостью, поэтому для изготовления постоянных магнитов из них применяется литьё.

Алюминат натрия

Алюминат натрия - неорганическое соединение, сложный окисел натрия и алюминия с формулой NaAlO 2 , белое аморфное вещество, реагирует с водой.

Ортоалюминиевая кислота

Алюмина"ты, соли алюминиевых кислот: ортоалюминиевой H3 AlO3 , метаалюминиевой HAlO2 и др. В природе наиболее распространены Алюминаты общей формулы R, где R - Mg, Са, Be, Zn и др. Среди них различают: 1) октаэдрические разновидности, т. н. шпинели - Mg (благородная шпинель), Zn (ганитовая или цинковая шпинель) и др. и 2) ромбические разновидности - Be (хризоберилл) и др. (в формулах минералов атомы, составляющие структурную группу, обычно заключают в квадратные скобки).

Алюминаты щелочных металлов получают при взаимодействии Al или Al(OH)3 с едкими щелочами: Al(OH)3 + KOH = KAlO2 + 2H2 O. Из них а люминаты натрия NaAlO2, образующийся при щелочном процессе получения глинозёма, применяют в текстильном производстве как протраву. Алюминаты щёлочноземельных металлов получают сплавлением их окислов с Al2 O3 ; из них алюминаты кальция CaAl2 O4 служит главной составной частью быстро твердеющего глинозёмистого цемента.

Практическое значение приобрели Алюминаты редкоземельных элементов. Их получают совместным растворением окислов редкоземельных элементов R2 03 и Al(NO3 )3 в азотной кислоте, выпариванием полученного раствора до кристаллизации солей и прокаливанием последних при 1000-1100°С. Образование Алюминаты контролируется рентгеноструктурным, а также химическим фазовым анализом. Последний основан на различной растворимости исходных окислов и образуемого соединения (А., например, устойчивы в уксусной кислоте, в то время как окислы редкоземельных элементов хорошо растворяются в ней). Алюминаты редкоземельных элементов обладают большой химической стойкостью, зависящей от температур их предварительного обжига; в воде устойчивы при высоких температурах (до 350°С) под давлением. Наилучший растворитель Алюминаты редкоземельных элементов - соляная кислота. Алюминаты редкоземельных элементов отличаются высокой тугоплавкостью и характерной окраской. Их плотности составляют от 6500 до 7500 кг /м3 .

3s 2 3p 1 Химические свойства Ковалентный радиус 118 пм Радиус иона 51 (+3e) пм Электроотрицательность
(по Полингу) 1,61 Электродный потенциал -1,66 в Степени окисления 3 Термодинамические свойства простого вещества Плотность 2,6989 /см ³ Молярная теплоёмкость 24,35 Дж /( ·моль) Теплопроводность 237 Вт /( ·) Температура плавления 933,5 Теплота плавления 10,75 кДж /моль Температура кипения 2792 Теплота испарения 284,1 кДж /моль Молярный объём 10,0 см ³/моль Кристаллическая решётка простого вещества Структура решётки кубическая гранецентрированая Параметры решётки 4,050 Отношение c/a — Температура Дебая 394

Алюми́ний — элемент главной подгруппы третьей группы третьего периода периодической системы химических элементов Д. И. Менделеева, атомный номер 13. Обозначается символом Al (Aluminium). Относится к группе лёгких металлов. Наиболее распространённый металл и третий по распространённости (после кислорода и кремния) химический элемент в земной коре.

Простое вещество алюминий (CAS-номер: 7429-90-5) — лёгкий, парамагнитный металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке. Алюминий обладает высокой тепло- и электропроводностью, стойкостью к коррозии за счёт быстрого образования прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия.

По некоторым биологическим исследованиям поступление алюминия в организм человека было сочтено фактором в развитии болезни Альцгеймера, но эти исследования были позже раскритикованы и вывод о связи одного с другим опровергался.

История

Впервые алюминий был получен Гансом Эрстедом в 1825 году действием амальгамы калия на хлорид алюминия с последующей отгонкой ртути.

Получение

Современный метод получения был разработан независимо американцем Чарльзом Холлом и французом Полем Эру . Он заключается в растворении оксида алюминия Al 2 O 3 в расплаве криолита Na 3 AlF 6 с последующим электролизом с использованием графитовых электродов . Такой метод получения требует больших затрат электроэнергии, и поэтому оказался востребован только в XX веке .

Для производства 1 т алюминия чернового требуется 1,920 т глинозёма, 0,065 т криолита, 0,035 т фторида алюминия, 0,600 т анодной массы и 17 тыс. кВт·ч электроэнергии постоянного тока.

Физические свойства

Металл серебристо-белого цвета, лёгкий, плотность — 2,7 г/см³, температура плавления у технического алюминия — 658 °C, у алюминия высокой чистоты — 660 °C, удельная теплота плавления — 390 кДж/кг, температура кипения — 2500 °C, удельная теплота испарения — 10,53 МДж/кг, временное сопротивление литого алюминия — 10-12 кг/мм², деформируемого — 18-25 кг/мм², сплавов — 38-42 кг/мм².

Твёрдость по Бринеллю — 24-32 кгс/мм², высокая пластичность: у технического — 35 %, у чистого — 50 %, прокатывается в тонкий лист и даже фольгу.

Алюминий обладает высокой электропроводностью и теплопроводностью, 65 % от электропроводности меди, обладает высокой светоотражательной способностью.

Алюминий образует сплавы почти со всеми металлами.

Нахождение в природе

Природный алюминий состоит практически полностью из единственного стабильного изотопа 27 Al со следами 26 Al, радиоактивного изотопа с периодом полураспада 720 тыс. лет, образующегося в атмосфере при бомбардировке ядер аргона протонами космических лучей.

По распространённости в природе занимает 1-е среди металлов и 3-е место среди элементов, уступая только кислороду и кремнию. Процент содержания алюминия в земной коре по данным различных исследователей составляет от 7,45 до 8,14 % от массы земной коры.

В природе алюминий встречается только в соединениях (минералах). Некоторые из них:

  • Бокситы — Al 2 O 3 . H 2 O (с примесями SiO 2 , Fe 2 O 3 , CaCO 3)
  • Нефелины — KNa 3 4
  • Алуниты — KAl(SO 4) 2 . 2Al(OH) 3
  • Глинозёмы (смеси каолинов с песком SiO 2 , известняком CaCO 3 , магнезитом MgCO 3)
  • Корунд — Al 2 O 3
  • Полевой шпат (ортоклаз) — K 2 O×Al 2 O 3 ×6SiO 2
  • Каолинит — Al 2 O 3 ×2SiO 2 × 2H 2 O
  • Алунит — (Na,K) 2 SO 4 ×Al 2 (SO 4) 3 ×4Al(OH) 3
  • Берилл — 3ВеО. Al 2 О 3 . 6SiO 2

В природных водах алюминий содержится в виде малотоксичных химических соединений, например, фторида алюминия. Вид катиона или аниона зависит, в первую очередь, от кислотности водной среды. Концентрации алюминия в поверхностных водных объектах России колеблются от 0,001 до 10 мг/л.

Химические свойства

Гидроксид алюминия

При нормальных условиях алюминий покрыт тонкой и прочной оксидной плёнкой и потому не реагирует с классическими окислителями : с H 2 O (t°);O 2 , HNO 3 (без нагревания). Благодаря этому алюминий практически не подвержен коррозии и потому широко востребован современной индустрией. Однако при разрушении оксидной плёнки (например, при контакте с растворами солей аммония NH 4 + , горячими щелочами или в результате амальгамирования), алюминий выступает как активный металл-восстановитель.

Легко реагирует с простыми веществами:

  • с кислородом : 4Al + 3O 2 = 2Al 2 O 3
  • с галогенами : 2Al + 3Br 2 = 2AlBr 3
  • с другими неметаллами реагирует при нагревании:
    • с серой , образуя сульфид алюминия : 2Al + 3S = Al 2 S 3
    • с азотом , образуя нитрид алюминия : 2Al + N 2 = 2AlN
    • с углеродом , образуя карбид алюминия : 4Al + 3С = Al 4 С 3

Метод, изобретённый почти одновременно Чарльзом Холлом во Франции и Полем Эру в США в 1886 году и основанный на получении алюминия электролизом глинозема, растворённого в расплавленном криолите, положил начало современному способу производства алюминия. С тех пор, в связи с усовершенствованием электротехники , производство алюминия совершенствовалось. Заметный вклад в развитие производства глинозема внесли русские ученые К. И. Байер, Д. А. Пеняков, А. Н. Кузнецов, Е. И. Жуковский, А. А. Яковкин и др.

Первый алюминиевый завод в России был построен в 1932 году в Волхове . Металлургическая промышленность СССР в 1939 году производила 47,7 тыс.тонн алюминия, ещё 2,2 тыс.тонн импортировалось.

В России фактическим монополистом по производству алюминия является ОАО «Русский алюминий », на который приходится около 13 % мирового рынка алюминия и 16 % глинозёма.

Мировые запасы бокситов практически безграничны, то есть несоизмеримы с динамикой спроса. Существующие мощности могут производить до 44,3 млн т первичного алюминия в год. Следует также учитывать, что в будущем некоторые из применений алюминия могут быть переориентированы на использование, например, композитных материалов.

Применение

Кусок алюминия и американская монетка.

Широко применяется как конструкционный материал. Основные достоинства алюминия в этом качестве — лёгкость, податливость штамповке, коррозионная стойкость (на воздухе алюминий мгновенно покрывается прочной плёнкой Al 2 O 3 , которая препятствует его дальнейшему окислению), высокая теплопроводность, неядовитость его соединений. В частности, эти свойства сделали алюминий чрезвычайно популярным при производстве кухонной посуды, алюминиевой фольги в пищевой промышленности и для упаковки.

Основной недостаток алюминия как конструкционного материала — малая прочность, поэтому его обычно сплавляют с небольшим количеством меди и магния - сплав дюралюминий.

Электропроводность алюминия всего в 1,7 раза меньше, чем у меди, при этом алюминий приблизительно в 2 раза дешевле. Поэтому он широко применяется в электротехнике для изготовления проводов, их экранирования и даже в микроэлектронике при изготовлении проводников в чипах. Меньшую электропроводность алюминия (37 1/ом) по сравнению с медью (63 1/ом) компенсируют увеличением сечения алюминиевых проводников. Недостатком алюминия как электротехнического материала является прочная оксидная плёнка, затрудняющая спаивание .

  • Благодаря комплексу свойств широко распространён в тепловом оборудовании.
  • Алюминий и его сплавы сохраняют прочность при сверхнизких температурах. Благодаря этому он широко используется в криогенной технике.
  • Высокий коэффициент отражения в сочетании с дешевизной и лёгкостью напыления делает алюминий идеальным материалом для изготовления зеркал .
  • В производстве строительных материалов как газообразующий агент.
  • Алитированием придают коррозионную и окалиностойкость стальным и другим сплавам, например клапанам поршневых ДВС, лопаткам турбин , нефтяным платформам , теплообменной аппаратуре , а также заменяют цинкование.
  • Сульфид алюминия используется для производства сероводорода .
  • Идут исследования по разработке пенистого алюминия как особо прочного и лёгкого материала.

В качестве восстановителя

  • Как компонент термита, смесей для алюмотермии
  • Алюминий применяют для восстановления редких металлов из их оксидов или галогенидов.

Сплавы на основе алюминия

В качестве конструкционного материала обычно используют не чистый алюминий, а разные сплавы на его основе.

— Алюминиево-магниевые сплавы обладают высокой коррозионной стойкостью и хорошо свариваются; из них делают, например, корпуса быстроходных судов.

— Алюминиево-марганцевые сплавы во многом аналогичны алюминиево-магниевым.

— Алюминиево-медные сплавы (в частности, дюралюминий) можно подвергать термообработке, что намного повышает их прочность. К сожалению, термообработанные материалы нельзя сваривать, поэтому детали самолётов до сих пор соединяют заклёпками. Сплав с бо́льшим содержанием меди по цвету внешне очень похож на золото , и его иногда применяют для имитации последнего.

— Алюминиево-кремниевые сплавы (силумины) лучше всего подходят для литья. Из них часто отливают корпуса разных механизмов.

— Комплексные сплавы на основе алюминия: авиаль.

— Алюминий переходит в сверхпроводящее состояние при температуре 1,2 Кельвина.

Алюминий как добавка в другие сплавы

Алюминий является важным компонентом многих сплавов. Например, в алюминиевых бронзах основные компоненты — медь и алюминий. В магниевых сплавах в качестве добавки чаще всего используется алюминий. Для изготовления спиралей в электронагревательных приборах используют (наряду с другими сплавами) фехраль (Fe, Cr, Al).

Ювелирные изделия

Когда алюминий был очень дорог, из него делали разнообразные ювелирные изделия. Мода на них сразу прошла, когда появились новые технологии его получения, во много раз снизившие себестоимость. Сейчас алюминий иногда используют в производстве бижутерии.

Стекловарение

В стекловарении используются фторид, фосфат и оксид алюминия.

Пищевая промышленность

Алюминий зарегистрирован в качестве пищевой добавки Е173.

Алюминий и его соединения в ракетной технике

Алюминий и его соединения используются в качестве высокоэффективного ракетного горючего в двухкомпонентных ракетных топливах и в качестве горючего компонента в твёрдых ракетных топливах. Следующие соединения алюминия представляют наибольший практический интерес как ракетное горючее:

— Алюминий: горючее в ракетных топливах. Применяется в виде порошка и суспензий в углеводородах и др
— Гидрид алюминия
— Боранат алюминия
— Триметилалюминий
— Триэтилалюминий
— Трипропилалюминий

Теоретические характеристики топлив, образованных гидридом алюминия с различными окислителями.

Окислитель Удельная тяга (Р1, сек) Температура сгорания °С Плотность топлива, г/см³ Прирост скорости, ΔV ид, 25, м/с Весовое содерж. горючего, %
Фтор 348,4 5009 1,504 5328 25
Тетрафторгидразин 327,4 4758 1,193 4434 19
ClF 3 287,7 4402 1,764 4762 20
ClF 5 303,7 4604 1,691 4922 20
Перхлорилфторид 293,7 3788 1,589 4617 47
Фторид кислорода 326,5 4067 1,511 5004 38,5
Кислород 310,8 4028 1,312 4428 56
Перекись водорода 318,4 3561 1,466 4806 52
N 2 O 4 300,5 3906 1,467 4537 47
Азотная кислота 301,3 3720 1,496 4595 49

Алюминий в мировой культуре

Поэт Андрей Вознесенский написал в 1959 году стихотворение «Осень», в котором использовал алюминий в качестве художественного образа:
…А за окошком в юном инее
лежат поля из алюминия…

Виктор Цой написал песню «Алюминиевые огурцы» с припевом:
Сажаю алюминиевые огурцы
На брезентовом поле
Я сажаю алюминиевые огурцы
На брезентовом поле

Токсичность

Отличается незначительным токсическим действием, но многие растворимые в воде неорганические соединения алюминия сохраняются в растворённом состоянии длительное время и могут оказывать вредное воздействие на человека и теплокровных животных через питьевую воду. Наиболее ядовиты хлориды, нитраты, ацетаты, сульфаты и др. Для человека токсическое действие при попадании внутрь оказывают следующие дозы соединений алюминия (мг/кг массы тела): ацетат алюминия — 0,2-0,4; гидроксид алюминия — 3,7-7,3; алюминиевые квасцы — 2,9. В первую очередь действует на нервную систему (накапливается в нервной ткани, приводя к тяжёлым расстройствам функции ЦНС). Однако свойство нейротоксичности алюминия стали изучать с середины 1960-х годов, так как накоплению металла в организме человека препятствует механизм его выведения. В обычных условиях с мочой может выделяться до 15 мг элемента в сутки. Соответственно, наибольший негативный эффект наблюдается у людей с нарушенной выделительной функцией почек.

Дополнительная информация

— Гидроксид алюминия
— Энциклопедия об алюминии
— Соединения алюминия
— Международный институт алюминия

Алюминий, Aluminium, Al (13)

Вяжущие вещества, содержащие алюминий, известны с глубокой древности. Однако под квасцами (лат. Alumen или Alumin, нем. Alaun), о которых говорится, в частности, у Плиния, в древности и в средние века понимали различные вещества. В «Алхимическом словаре» Руланда слово Alumen с добавлением различных определений приводится в 34 значениях. В частности, оно означало антимоний, Alumen alafuri — алкалическую соль, Alumen Alcori — нитрум или алкалические квасцы, Alumen creptum — тартар (винный камень) хорошего вина, Alumen fascioli — щелочь, Alumen odig — нашатырь, Alumen scoriole — гипс и т. д. Лемери, автор известного «Словаря простых аптекарских товаров» (1716), также приводит большой перечень разновидностей квасцов.

До XVIII в. соединения алюминия (квасцы и окись) не умели отличать от других, похожих по внешнему виду соединений. Лемери следующим образом описывает квасцы: «В 1754 r. Маргграф выделил из раствора квасцов (действием щелочи) осадок окиси алюминия, названной им »квасцовой землей» (Alaunerde), и установил ее отличие от других земель. Вскоре квасцовая земля получила название алюмина (Alumina или Alumine). В 1782 г. Лавуазье высказал мысль, что алюмина представляет собой окисел неизвестного элемента. В «Таблице простых тел» Лавуазье поместил алюмину (Alumine) среди «простых тел, солеобразующих, землистых«. Здесь же приведены синонимы названия алюмина: аргила (Argile), квасцовая. земля, основание квасцов. Слово аргила, или аргилла, как указывает Лемери в своем словаре, происходит от греч. горшечная глина. Дальтон в своей »Новой системе химической философии» приводит специальный знак для алюмины и дает сложную структурную (!) формулу квасцов.

После открытия с помощью гальванического электричества щелочных металлов Дэви и Берцелиус безуспешно пытались выделить тем же путем металлический алюминий из глинозема. Лишь в 1825 г. задача была решена датским физиком Эрстедом химическим способом. Он пропускал хлор через раскаленную смесь глинозема с углем, и полученный безводный хлористый алюминий нагревал с амальгамой калия. После испарения ртути, пишет Эрстед, получался металл, похожий по внешнему виду на олово. Наконец, в 1827 г. Велер выделил металлический алюминий более эффективным способом — нагреванием безводного хлористого алюминия с металлическим калием.

Около 1807 г. Дэви, пытавшийся осуществить электролиз глинозема, дал название предполагаемому в нем металлу алюмиум (Alumium) или алюминум (Aluminum). Последнее название с тех пор ужилось в США, в то время как в Англии и других странах принято предложенное впоследствии тем же Дэви название алюминиум (Aluminium). Вполне ясно, что все эти названия произошли от латинского слова квасцы (Alumen), насчет происхождения которого существуют разные мнения, базирующиеся на свидетельствах различных авторов, начиная с древности.

А. М. Васильев, отмечая неясное происхождение этого слова, приводит мнение некоего Исидора (очевидно Исидора Севильского, епископа, жившего в 560 — 636 гг.,- энциклопедиста, занимавшегося, в частности, этимологическими исследованиями): «Alumen называют a lumen, так как он придает краскам lumen (свет, яркость), будучи добавлен при крашении«. Однако это, хотя и очень давнее, объяснение не доказывает, что слово alumen имеет именно такие истоки. Здесь вполне вероятна лишь случайная тавтология. Лемери (1716) в свою очередь указывает, что слово alumen связано с греческим (халми), означающим соленость, соляной раствор, рассол и пр.

Русские названия алюминия в первые десятилетия XIX в. довольно разнообразны. Каждый из авторов книг по химии этого периода, очевидно, стремился предложить свое название. Так, Захаров именует алюминий глиноземом (1810), Гизе — алумием (1813), Страхов — квасцом (1825), Иовский — глинистостью, Щеглов — глиноземием (1830). В »Магазине Двигубского» (1822 — 1830) глинозем называется алюмин, алюмина, алумин (например, фосфорно-кисловатая алюмина), а металл — алуминий и алюминий (1824). Гесс в первом издании «Оснований чистой химии» (1831) употребляет название глиноземий (Aluminium), а в пятом издании (1840) — глиний. Однако названия для солей он образует на основе термина глинозем, например сернокислый глинозем. Менделеев в первом издании »Основ химии" (1871) пользуется названиями алюминий и глиний. В дальнейших изданиях слово глиний уже не встречается.

Что еще почитать